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The model presented here to describe the deformation behaviour of filled elastomers is based on the 
observation that deformation occurs inhomogeneously. As a result of extending a filled rubber, the filler 
particles become aligned in rows parallel to the stretching direction. The rows are connected to each other 
by strands emanating from the filler particles, forming a second network that is superimposed on the 
molecular network. The stress-strain behaviour can be described by writing the stress as a superposition 
of stresses of the individual networks, a=(1 -O)a l  +~a2. The parameter • gives the volume fraction of 
strands between the filler particles. Macroscopic properties such as stress-strain behaviour or stress-induced 
crystallization of filled elastomers are described well by this model. 

(Keywords: network model; elastomers; reinforcement; filler; fully extended chains; stress-strain behaviour; stress-induced 
crystallization) 

I N T R O D U C T I O N  

The classical statistical theory of rubber elasticity 
attributes elastic stresses entirely to changes in the 
conformational entropy of the individual network 
chainst-3. Since the basic behaviour of polymer networks 
is predicted correctly, i.e. the dependence of elastic moduli 
on crosslink density and temperature, there have been 
numerous attempts to carry over the statistical theory of 
rubber elasticity to filled elastomers (see, for example, the 
review article of Kraus~). The increase in modulus of a 
filled system is generally attributed to two factors: first, 
hydrodynamic interactions caused by the filler particles; 
and secondly, the non-Gaussian distribution of chains 
between the filler particles 5-8'19. In all these descriptions, 
a homogeneous deformation of the matrix is assumed. On 
the other hand, if one considers a filled elastomer as a 
series of strands with alternating sections of rubber and 
filler, then the average local strain of the matrix is greater 
than the applied macroscopic strain of the sample. This 
consideration, which has been formulated by Bueche 9 as 
the strain amplification concept, leads to a fundamentally 
inhomogeneous deformation behaviour of filled elastomers. 
This behaviour has been shown by Hess using electron 
m i c ro sc op f  °. 

Using the inhomogeneous deformation of filled 
elastomers as a starting point, we have developed in this 
work a mathematical description of the load-extension 
behaviour, based on the superposition of two networks. 
One network is formed by the chemically crosslinked 
matrix; the second arises due to the adhesion of the matrix 
to the filler particles, which act as network points. When 
the sample is deformed, strands form between the filler 
particles. The strands are mathematically described as 
subchains in the supernetwork. Neither network is treated 
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as being ideally Gaussian, but a description is used in 
which some of the subchains are fully stretched. 

THEORY 

Preliminary development 
Ortmann, Dietrich and Bonart 11,12 developed a model 

describing the influence of the finite extensibility of 
network chains on the orientation behaviour of a 
polymer network. The model is based on the following 
assumptions: 

(i) The network is considered as a so-called 'phantom 
network', consisting of non-interacting chains. Each chain 
consists of N statistical segments of length I. 

(ii) The density distribution of the chain vectors where 
r<rrnax = Nl is approximated by an affinely deforming 
Gaussian distribution. 

(iii) A fully extended chain behaves like a rod and it 
continues to orientate in a pseudo-afline manner. 

(iv) The deformation takes place at constant volume. 
The density distribution p~(ro) of the end-to-end vector 

of a random walk is as follows: 

b 3 
pc(ro) = ~ exp(-- b2r 2) (1) 

where b = [3/2~12)] 1/2. 
A deformed network is assumed to consist of chains 

that are fully extended, and chains that are coiled and 
can be deformed further in an affine manner. The density 
distribution of a deformed network is as follows: 

P0~, r) = [ 1 - '~'(~)]p < (~, 0 + ~I'(#)p = (#, r) (2) 

where ~(#) expresses the portion of fully extended chains 
as a function of the strain rate #; p<(/z, r) represents the 
probability density of the end-to-end vectors that are 
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Figure 1 Model strain ratio # as a function of the macroscopic strain 
ratio. For small strains /~=2 (affine deformation). On reaching the 
extensibility limit (3N) ~/2 ( . . . . . .  ), # diverges 

more or less randomly coiled and can displace affinely; 
and that p =(p, r) is the probability density of the network 
chains that are fully extended. By integrating the affine 
deformed Gaussian function, p(#, r): 

b 3 p(~t, r) = ~_j_~ exp[ _ b2r2(, ll3 - (la3 -1 )  cOs2 

(3) 

from rmax = Nl up to oo, one will obtain W(/~): 

• (p) = 2~ d8 sin 8 dr r2p(#, r) (4) 

A good analytical expression for the above integral is 
given, for ~ >  1.1 and N > 5 ,  by: 

~F(#) = p3-~1 {1 e21(3N~t /27~  
- L ; \ T /  _13 (5) 

Comparing macroscopic measurable parameters with 
the model, it is necessary to establish a relationship 
between the macroscopic strain ratio 2 and the microscopic 
strain ratio/~. The macroscopic strain ratio 2 must possess 
a limit if W(p) reaches 1, i.e. when only fully extended 
chains are present. At this point the network cannot be 
stretched further. 

Let us consider a random walk of the end-to-end 
vectors through the network. By increasing the number, 
M, of individual chain vectors r~, the specimen vector R 
will reach macroscopic dimensions and will displace in 
an affine manner. From this one obtains the following 
relation between the microscopic and the macroscopic 
strain ratios: 

( z2) p~,,,~ = ( Z2)o 2z (6) 

where 2 (z)p~, , )  is the variance of the deformed Gaussian 
distribution and (Z2)o is the variance of the z component 
of the macroscopic specimen vector. Calculating the 
left-hand side of equation (6) one obtains a functional 
relation between # and 2: 

2 2  = / / 2  - -  # 5  I1 -- erf(~/) + )/erf'0/)] + 3NV(/0 (7) /t 2 -  1 

where tl=(3N/2)x/2/#, eft(r/) is the error function, and 
erf'(r/) is the first derivative of the error function. 

The function #(2) is shown in Figure 1. As long as the 

portion of fully extended chains is small, the model strain 
ratio is equal to the macroscopic strain ratio 2. When a 
significant amount of fully extended chains is reached 
(see Figure 1), # becomes larger than 2, and increases 
rapidly. 

The model for a filled elastomer 
Active fillers, such as carbon black or surface-modified 

silica, possess the capability to adsorb or bind polymer 
chainS. Therefore multi- or polyfunctional crosslinks exist 
in addition to the tetrafunctional crosslinks of the rubber 
matrix. 

TEM investigations of unstretched and stretched 
carbon-black-filled samples 13 give an insight into the 
micromorphology. Undeformed samples (Figure 2) at 
the microscopic level reflect an inhomogeneous filler 
distribution. One can see areas of densely packed fillers 
and others completely free from filler particles. This fact 
implies different mechanical properties at the microscopic 
level. 

As shown in Figure 3 a uniaxial deformed sample 
undergoes a change in morphology. As a result of a 
uniaxial deformation, bands are formed that run from 
one end of the sample to the other, and the filler particles 
are linked by these bands. 

According to the TEM results a filled sample consists 

Figure 2 Unstretched, carbon-black-filled (40phr, Corax N 765) 
sample viewed in the transmission electron microscope. The white bar 
marks 600 nm 

Figure 3 Stretched, carbon-black-filled (40 phr, Corax N 765) sample 
viewed in the transmission electron microscope. The white bar marks 
1100 nm and the arrow indicates the direction of stress 
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of two different networks, a 'matrix network' and a 'super 
network'. The filler-free areas form the matrix network 
(Fioure 2) caused by chemical crosslinking of the 
elastomer chains. So the mechanical properties of this 
network are determined by the statistical parameters of 
an unfilled, but crosslinked, elastomer matrix. 

In the case of the supernetwork, the polyfunctional 
filler particles are regarded as the crosslinks in this 
network. The bands connecting the filler particles are 
only visible in the deformed state (Fioure 3). These bands 
represent the network chains of the supernetwork. To 
describe the double network model mathematically, we 
use the assumptions and the formalism shown above 
(preliminary development). 

The probability density of the end-to-end vector in 
each network is represented by a Gaussian function. Their 
sum is the total probability density, i.e. 

Ptot,,(ro) = (1 -- O)pl(ro) + Op2(ro) (8) 

where • is the volume fraction of the supernetwork in a 
filled system, and px(ro) and p2(ro) a re  the probability 
densities of the matrix and the supernetwork respectively, 
such that: 

b3 b2 a 2 2 
P x (ro) = ~ exp( - b2r 2) p2(ro) = ~ exp(-  b 2 to) 

where bl and b 2 a re  functions of the statistical parameters 
N 1 or  N 2 and 11 or  12 of each network. N 1 and N 2 a re  
average numbers of statistical segments forming a 
network chain; 11 and 12 are  the lengths of the statistical 
segments in the different networks. 

The probability density of a deformed and filled system 
is: 

Ptotal(#, r) = (1 - 0 ) { [ 1  - V 1 (/z)-lpl < (#, r) -I- V l ( /Op,  = ~ ,  r)} 

-1- o { r l  - ~P2(u)]p2 <(k t, r) + ~F2(/2)p 2 =(#, r)} 
(9) 

where ~1~)  and ~2(/~) determine the amount of fully 
extended chains in each network. The total amount of 
fully extended chains can be evaluated using: 

kI'/totM(# ) = (1 - -  (I))~I / 1CU) -Jr (IDlkI'/2 (]A) (10)  

MACROSCOPIC PROPERTIES OF THE 
DOUBLE NETWORK 

Strain rate 2 
The fundamental assumption is that both networks are 

independent of each other. Therefore we can calculate 
the macroscopic strains )̀ 1 and )`2 in each network. The 
total macroscopic strain ), is a mathematical combination 
of ).1 and )`2- As shown in equation (6) the macroscopic 
strain ratios )'1 and )`2 a re  functions of the model strain 
ratio/t: 

2 __ 2 2 
(Z1)pl(lU,l") --  ( Z l ) 0 ) ' 1  (11) 

2 2 2 
(Z2)p2(/~,r) = (Z2)O) '  2 (12) 

where (Z2)o = 1/(2b 2) and (Z2)o = 1/(2b2). 
The expressions for 

equation (7) are: 

2 1 

= 2-g f.  @ - - -  

D1, 2 = 1 - err(q1,2) q- 711,2 erf'0/x,2) 

2 2 (z2)p:t~.,) (zl)p,t~.,) and from 

) I ~3-1 D1,2 +N1,212,2g/1,2(#) 

(13) 

(14) 

The variance of the z component of the overall 
macroscopic specimen vector is the sum of the variances 
in each single network, and: 

2 2 2 2 2 2 
(Ztotal)0)` =(1-O)(Zl)o)`  1-t-O(z2)o21 (15) 

and 

(Z2otal) 0 __ (1 - O)b 2 + Ob~ (16) 
2b2b 2 

Combining equations (15) and (16) and substituting for 
(Z2)o and (z~)o, we obtain the functional relation 
between the microscopic strain ratio # and the 
macroscopic strain ratio )`: 

r 2b2b2 \-lU2 
2 = L(1 _ 0_)_~2222 ~o_ Ob2 ((1 _ O) 1 2 1 

(17) 

2 is a function of the macroscopic strain rate and it 
enables us to describe macroscopic measurable properties 
of filled samples in terms of the double network. 

Stress 
The macroscopic stress O'total, applied to a filled system, 

is described by the sum of the individual stresses, and 
they are added according to the volume fraction • of the 
supernetwork, such that: 

O'tota I = (1 - O)a 1 + Oa2 (18) 

0-1 = Ga(21 _~12 ) 1 (19a) 
1 --  ~1()`1) 

0"2= G2()`2 _~22 ) 1 (19b) 
1 --  ~'/2()`2) 

at and 0"2 can be calculated with the Gaussian 
deformation functions. Therefore the retractive force is 
purely entropic. In particular, we consider that our model 
describes the mechanical behaviour at high deformations 
and show that it is determined by fully extended chains. 
We do not consider elastic energy contributions to the 
retractive force, which provide a constant portion to the 
total stress at high deformations. Elastic energy effects 
are more significant at small deformations. Here, 50% 
or more of the retractive force can be due to elastic energy 
effects (see Grassier1*). Furthermore, we do not take into 
account stress softening, caused by relaxation processes, 
or detachment of rubber chains from the filler particles. 

Equations (19a) and (19b) contain the empirical factors 
1/(1-~F0 and 1/(1-~2), which take the high force 
contributed by fully extended chains into account. At 
high deformations, when a certain amount of fully 
extended chains is present, the empirical factors diverge 
and the stress will rise rapidly. 

Influence of the network parameter on the shape of the 
stress-strain curve 

To describe a filled system the model requires five 
parameters, N1, N2, 11, 12 and O. In the following we will 
show how the parameters change the shape of the 
stress-strain curve. 

(i) First, N 2 alone was changed and the other 
parameters remained constant, i.e. N1 = 30, 11 = 3 x 10- 9 m, 
12=3x 10-9m and 0=0.50. Figure 4 shows that, the 
smaller the number of statistical segments in the 
supernetwork, the steeper the upswing of the stress-strain 
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Figure 4 Stress-strain curves for different N 2. The values of N 2 are 
shown on each curve 
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Figure 5 Stress-strain curves where the length of the statistical 
segment l 2 is varied. The values of 12 are shown on each curve 

curve. Additionally the beginning of the upswing is shifted 
to a lower macroscopic strain. 

(ii) Secondly, the effect of the segment length 12 was 
tested. The values of the constant parameters were: 
N 1 = 30, N 2 = 10, l~ = 3 x 10-9m and • = 0.50. A longer 
statistical segment in the supernetwork resulted in a 
greater slope of the stress-strain curve (Figure 5), but the 
beginning of the upswing was not changed very much. 

(iii) Thirdly, the volume fraction of the supernetwork 
was changed and the other parameters kept constant. An 
increase of the volume fraction of the supernetwork 
caused a shift of the stress upswing to a smaller 
macroscopic strain. In addition the stress level rises at 
small deformations. It is obvious that the shape of the 
stress-strain curve is affected more and more by the 
statistical parameters of the supernetwork, while tI) is 
increasing. 

According to the points mentioned above, one can 
draw the conclusion that the shape of the computed 
stress-strain curves was mostly affected by the number 
of statistical segments in the supernetwork. The 
p a r a m e t e r s  l 2 and • do not have such serious 
consequences on the shape of the curves. The beginning 
of the upswing is essentially stipulated by N 2. 

Stress-induced crystallization 
In a strained natural rubber the entropy S of the 

network chains is reduced. According to TM = AH/AS, the 
melting temperature Tu of the crystals is shifted to higher 
temperatures. Consequently it is possible to obtain 
crystals in a stretched specimen at temperatures above 
the isotropic melting point. 

In this case we assume that the volume fraction of fully 
extended chains ~I'/total(~t) is proportional to the portion 
of stress-induced crystals Ccr. Equation (20) gives the 
functional relation between ~IJtotal(~) and C, :  

Cer =f~'IJtotal(~) (20) 

f i s  a proportionality factor, which indicates the amount 
of fully extended chains that are transformed into 
stress-induced crystals. 

(i) Some fully extended chains or chain segments exist 
and are joined by adjacent and preoriented chains to 
form a crystal. Here f >  1 because not all the chains in a 
crystal are mechanically fully extended ones (Figure 6a). 

(ii) For f =  1, a stress-induced crystal is only built by 
fully extended chains and each of these chains is part of 
a crystal (Figure 6b). 

(iii) For f <  1, not every fully extended chain takes part 
in a stress-induced crystal (Figure 6c). 

MODEL AND EXPERIMENT 

Stress-strain curve 
The stress-strain data of filled polydimethylsiloxane 

(PDMS) networks were taken from Mark is. He and his 
coworkers 16 prepared samples by mixing tetraethyl 
orthosilicate (TEOS) with vinyl-terminated PDMS, 
which can be hydrolysed to give an SiO2-filled polymer. 
These filled elastomers can be regarded as model systems 
because the elastomer chains are attached with their ends 
to the filler particles. 

Stress-strain curves of these systems are compared with 
our double network model in Figure 7, from which it can 
be seen that the experimental data are well described by 
the double network model. Owing to the preparation 
technique, ideal conditions exist; complete attachment of 
the chain ends to the filler surfaces, almost spherical shape 
of the filler particles and no filler aggregation. According 
to these circumstances there has to be a correlation 
between the filler surface in each sample and the volume 
fraction of the supernetwork, which is gained by fitting 
the experimental data. The surface area able to attach 
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f<1 t C 
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Direction of strain 

Figure 6 Schematic description of stress-induced crystallization. The 
straight thick lines, pointing in the direction of stress, mark the fully 
extended chains. The stress-induced crystals are accentuated with circles 
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Figure 7 Stress-strain curves of filled PDMS networks: (O) unfilled, 
(©) 2.3 vol%, (Q) 4.5 vol%, (Q) 9vo1%, (A) 10.8 vol% and (x) 
14.5 vol% silica. The full curves are computed according to the double 
network model 

Table 1 

Sample (i) a b c d e f 

VF(i) (VOI%) 0.0 2.3 4.5 9.0 10.8 14.5 
O(i) (vol%) 0.0 25.0 34.0 48.0 57.0 70.0 
( v i) 

V--~/ - 0.29 0.46 0.73 0.82 1.00 

- 0.33 0.48 0.70 0.81 1.00 
~ f )  

polymer chains is proportional to the experimental 
volume fraction of the filler particles raised to the 
two-thirds power: 

( VF(i) ~ z/3 ~P(i) (21) 
V---~J - O ( f )  

The left-hand side of equation (21) represents the surface 
ratio of the filler particles, and the right-hand side the 
volume fraction of the supernetwork. Both ratios are 
standardized for the sample with the highest filler content 
(sample number f). The index for each sample (i) is shown 
in Table 1. Additionally we added the numerical values 
of both sides of equation (21). 

As one can see, there is indeed a correlation between 
the parameters VF(/) and O(i). The volume fraction @ of 
the supernetwork is proportional to the filler surface 
available to attach polymer chains. 

In addition to this, the validity of the double network 
model has been tested by fitting stress-strain curves 
of carbon-black-filled rubbers. Before recording the 
stress-strain data, the samples had been prestretched to 
avoid stress softening or the so-called Mullins effect 17. 
The Gaussian deformation functions of the model can 
only describe completely reversible deformations. 

Nevertheless natural rubber possesses the property of 
forming stress-induced crystals, which act as additional 
crosslinks in the deformed system. To avoid the influence 
of the stress-induced crystals, the measurements have 
been carried out at 343 K. Stress-strain data have been 
recorded from samples with different carbon black 
contents, and the double network model has been fitted 
to the experimental data (Figure 8). The best-fit 
parameters can be seen in Table 2. 

Stress-induced crystallization 
The parameters resulting from the fit of the experimental 

data (Table 2) were used to calculate the volume 
fraction of the stress-induced crystals. Experimental data 
have been taken from calorimetry measurements is. As 
Figure 9 shows, we are able to calculate the volume 
fraction of stress-induced crystals as a function of the 
macroscopic strain rate 2. In this case when the 
proportionality factor is set to 1 in equation (20), 
we achieved a good conformity between model and 
experiment. The proportion of stress-induced crystals 

lol 

° L 0 

¢ 

2" ~ 

o i 3 i = 

macroscopic strain rate X 

Figure 8 Mechanical stress as a function of the macroscopic strain 
ratio 2. The symbols represent the experimental data of every filler 
content: (©) 10 phr, (/X) 20 phr, ( x ) 30 phr, (Q) 40 phr and (Q) 50 phr. 
The full curves are calculated according to equation (18) 

Table 2 

Number of Segment length 
segments (nm) Volume fraction of 

Carbon black supernetwork, 
content (phr) N 1 N 2 11 12 • 

10 40 14 1.6 30 0.25 
20 40 9 1.6 30 0.45 
30 40 8 1.6 30 0.50 
40 40 6 1.6 30 0.56 
50 40 6 1.6 30 0.70 

b ¢_) 

0.02 

x 

0.01 

o 2 3 = 

macroscopic strain rate ;k 

Figure 9 Volume fraction of the stress-induced crystals as a function 
of the macroscopic strain ratio. The experimental data ( x ) 10 phr, (<>) 
20 phr, ((3) 30 phr and (Q) 50 phr are compared with the theoretical 
data (full curves) 
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only is overestimated for the sample with 50 phr carbon 
black. 

Here a proportionality factor , f< 1, will provide a better 
fit of the experimental data. According to Figure 9, we 
concede that not every fully extended chain is part of a 
strain-induced crystal, if the filler load is fairly high. The 
number of chains attached to the filler surface is 
increasing with increasing filler content, and consequently 
the chain mobility is reduced. There is no doubt  that 
numerous fully extended chains exist in a deformed and 
highly filled elastomer. Thus, owing to the reduced 
mobility, not every fully extended chain is part of a 
stress-induced crystal. 

CONCLUSIONS 

In this paper a model has been developed to describe 
the mechanical properties of uniaxial deformed filled 
elastomers. The double network model separates the filled 
elastomer into two components: one reflects the statistical 
properties of the unfilled and crosslinked rubber matrix; 
in the other one, the filler particles act as crosslinks and 
the connecting rubber molecules are the network chains. 

The limited extensibility of the network chains has 
been taken into account and it becomes clear that the 
supernetwork controls the mechanical properties at high 
deformations. A small number of statistical segments N 2 
in the supernetwork causes a remarkable number of fully 
extended chains at small deformations. N 2 is a function 
of the filler content. An increasing filler content decreases 
the average distance between the fillers, which are the 
crosslinks of the supernetwork. 

The parameter 12 (length of the statistical segments in 
the supernetwork) reflects the restrictions caused by 
active fillers: 

(i) Polymer chains are adsorbed by the filler surfaces 
and their segmental mobility decreases in these regions. 
On the filler surface the polymer chains possess a 
two-dimensional mobility 4. The chains are preoriented 
around the filler particles. 

(ii) The average diameter of the filler particle is 10 or 
more times greater than the monomer length of the 
elastomers. Therefore the molecules are bound with 
several segments to the filler surface and have restricted 
mobility. 

It is apparent from the fit of the model to the 

experimental data of filled PDMS networks that the 
volume fraction of the supernetwork is a function of the 
filler surface provided for attachment in filled systems. 
In carbon-black-filled elastomers, the surface activity 
of the fillers determines the volume fraction of the 
supernetwork. Highly active fillers cause a greater volume 
fraction of the supernetwork than less-active fillers. The 
parameter • is sensitive to the filler surface and the filler 
surface activity. 

Additionally the double network model describes 
the stress-induced crystallization without changing the 
parameters obtained, describing the experimental 
stress-strain curve of filled natural rubber (see Table 2). 
The theoretical description of stress-induced crystallization 
allows statements about the process of crystal formation 
under deformation. At least the double network model 
reveals that deformation is completely inhomogeneous. 
In a deformed sample the supernetwork is highly stressed. 
Bands are connecting the filler particles whereas the 
matrix network is less stressed. These bands consist of 
rubber molecules, which are well oriented in the direction 
of deformation. The molecules of the supernetwork carry 
the major load applied to a filled system. 
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